3 раствор сколько. Формула для решения задач на разведение растворов
Формула для решения задач на разведение растворов
(получить из более концентрированного раствора менее концентрированный)
1 действие:
количество мл более концентрированного раствора (который необходимо развести)
необходимый объем в мл (который необходимо приготовить)
– концентрация менее концентрированного раствора (того, который необходимо получить)
– концентрация более концентрированного раствора (того, который разводим)
2 действие:
Количество мл воды (или разбавителя) = или воды до (ad) необходимого объема (
)
Задача№6. Во флаконе ампициллина находится 0,5 сухого лекарственного средства. Сколько нужно взять растворителя, чтобы в 0,5 мл раствора было 0,1 г сухого вещества.
Решение:при разведении антибиотика на 0,1 г сухого порошка берут 0,5 мл
растворителя, следовательно, если,
0,1 г сухого вещества – 0,5 мл растворителя
0,5 г сухого вещества – х мл растворителя
Ответ: чтобы в 0,5 мл раствора было 0,1 г сухого вещества необходимо взять 2,5 мл растворителя.
Задача № 7. Во флаконе пенициллина находится 1 млн. ЕД сухого лекарственного средства. Сколько нужно взять растворителя, чтобы в 0,5 мл раствора было 100000 ЕД сухого вещества.
Решение: 100000 ЕД сухого вещества – 0,5 мл сухого вещества, тогда в 100000 ЕД сухого вещества –0,5 мл сухого вещества.
Ответ: чтобы в 0,5 мл раствора было 100000ЕД сухого вещества необходимо взять 5 мл растворителя.
Задача № 8. Во флаконе оксацилина находится 0,25 сухого лекарственного средства. Сколько нужно взять растворителя, чтобы в 1 мл раствора было 0,1 г сухого вещества
Решение:
1 мл раствора – 0,1г
Ответ: чтобы в 1 мл раствора было 0,1 г сухого вещества нужно взять 2,5 мл растворителя.
Задача №9. Цена деления инсулинового шприца – 4 ЕД. Скольким делениям шприца соответствует 28 ЕД. инсулина? 36 ЕД.? 52 ЕД.?
Решение:Для того, чтобы узнать скольким делениям шприца соответствует 28 ЕД. инсулина необходимо: 28:4 =7(делениям).
Ответ:7, 9, 13 делениям.
Задача № 10. Сколько нужно взять 10% раствора осветленной хлорной извести и воды (в литрах) для приготовления 10л 5%раствора.
Решение:
(г) активного вещества
(мл) 10% раствора
3) 10000-5000=5000 (мл) воды
Ответ: необходимо взять 5000мл осветленной хлорной извести и 5000мл воды.
Задача № 11. Сколько нужно взять 10% раствора хлорной извести и воды для приготовления 5л 1% раствора.
Решение:
Так как в 100 мл содержится 10 г активного вещества то,
(мл) активного вещества
00 (мл) 10% раствора
3) 5000-500=4500 (мл) воды.
Ответ:необходимо взять 500 мл 10% раствора и 4500мл воды.
Задача № 12. Сколько нужно взять 10% раствора хлорной извести и воды для приготовления 2л 0,5% раствора.
Решение:
Так как в 100 мл содержится 10 мл активного вещества то,
0 ( мл ) активного вещества
(мл) 10% раствора
3) 2000-100=1900 (мл) воды.
Ответ:необходимо взять 10 мл 10% раствора и 1900 мл воды.
Задача № 13. Сколько нужно взять хлорамина (сухое вещество) в г и воды для приготовления 1 литра 3%раствора.
Решение:
Процент – количество вещества в 100 мл.
г
2) 10000 – 300=9700мл.
Ответ: для приготовления 10 литров 3%раствора необходимо взять 300г хлорамина и 9700мл воды.
Задача № 14. Сколько нужно взять хлорамина (сухого) в г и воды для приготовления 3-х литров 0,5% раствора.
Решение:
Процент – количество вещества в 100 мл.
г
2) 3000 – 15=2985мл.
Ответ: для приготовления 10 литров 3%раствора необходимо взять 15г хлорамина и 2985мл воды
Задача № 15. Сколько нужно взять хлорамина (сухого) в г и воды для приготовления 5 литров 3% раствора.
Решение:
Процент – количество вещества в 100 мл.
г
2) 5000 – 150= 4850мл.
Ответ:для приготовления 5 литров 3%раствора необходимо взять 150г хлорамина и 4850 мл воды.
Задача № 16. Для постановки согревающего компресса из 40% раствора этилового спирта необходимо взять 50мл. Сколько нужно взять 96% спирта для постановки согревающего компресса?
Решение:
мл
Ответ:Для приготовления согревающего компресса из 96% раствора этилового спирта необходимо взять 21 мл.
Задача № 17. Приготовить 1 литр 1% раствор хлорной извести для обработки инвентаря из 1 литра маточного 10% раствора.
Решение: Подсчитайте сколько нужно взять мл 10% раствора для приготовления 1% раствора:
Ответ:Чтобы приготовить 1 литр 1% раствора хлорной извести нужно взять 100 мл 10% раствора и добавить 900 мл воды.
Задача № 18. Больной должен принимать лекарство по 1 мг в порошках 4 раза в день в течении 7 дней, то сколько необходимо выписать данного лекарства ( расчет вести в граммах).
Решение:1г = 1000мг, следовательно, 1 мг = 0,001 г.
Подсчитайте сколько больному необходимо лекарства в день:
4* 0,001 г = 0,004 г, следовательно, на 7 дней ему необходимо:
7* 0,004 г = 0,028 г.
Ответ:данного лекарства необходимо выписать 0,028 г.
Задача № 19. Больному необходимо ввести 400 тысяч единиц пенициллина. Флакон по 1 миллиону единиц. Развести 1:1. Сколько мл раствора необходимо взять.
Решение: При разведении 1:1 в 1 мл раствора содержится 100 тысяч единиц действия. 1 флакон пенициллина по 1 миллиону единиц разводим10 мл раствора. Если больному необходимо ввести 400 тысяч единиц, то необходимо взять 4 мл полученного раствора.
Ответ: необходимо взять 4 мл полученного раствора.
Задача № 20. Ввести больному 24 единицы инсулина. Цена деления шприца 0,1 мл.
Решение: в 1 мл инсулина содержится 40 единиц инсулина. В 0,1 мл инсулина содержится 4 единицы инсулина. Чтобы ввести больному 24 единицы инсулина необходимо взять 0,6 мл инсулина.
Концентрация растворов. Способы выражения концентрации растворов.
Концентрация раствора может выражаться как в безразмерных единицах (долях, процентах), так и в размерных величинах (массовых долях, молярности, титрах, мольных долях).
Концентрация – это количественный состав растворенного вещества (в конкретных единицах) в единице объема или массы. Обозначили растворенное вещество – Х, а растворитель – S. Чаще всего использую понятие молярности (молярная концентрация) и мольной доли.
Способы выражения концентрации растворов.
1. Массовая доля (или процентная концентрация вещества) – это отношение массы растворенного вещества m к общей массе раствора. Для бинарного раствора, состоящего из растворённого вещества и растворителя:
,
ω – массовая доля растворенного вещества;
mв-ва – масса растворённого вещества;
Массовую долю выражают в долях от единицы или в процентах.
2. Молярная концентрация или молярность – это количество молей растворённого вещества в одном литре раствора V:
,
C – молярная концентрация растворённого вещества, моль/л (возможно также обозначение М, например, 0,2 М HCl);
n – количество растворенного вещества, моль;
V – объём раствора, л.
Раствор называют молярным или одномолярным, если в 1 литре раствора растворено 1 моль вещества, децимолярным – растворено 0,1 моля вещества, сантимолярным – растворено 0,01 моля вещества, миллимолярным – растворено 0,001 моля вещества.
3. Моляльная концентрация (моляльность) раствора С(x) показывает количество молей n растворенного вещества в 1 кг растворителя m:
,
С (x) – моляльность, моль/кг;
n – количество растворенного вещества, моль;
4. Титр – содержание вещества в граммах в 1 мл раствора:
,
T – титр растворённого вещества, г/мл;
mв-ва – масса растворенного вещества, г;
5. Мольная доля растворённого вещества – безразмерная величина, равная отношению количества растворенного вещества n к общему количеству веществ в растворе:
,
N – мольная доля растворённого вещества;
n – количество растворённого вещества, моль;
nр-ля – количество вещества растворителя, моль.
Сумма мольных долей должна равняться 1:
Иногда при решении задач необходимо переходить от одних единиц выражения к другим:
ω(X) – массовая доля растворенного вещества, в %;
М(Х) – молярная масса растворенного вещества;
ρ= m/(1000V) – плотность раствора. 6. Нормальная концентрация растворов (нормальность или молярная концентрация эквивалента) – число грамм-эквивалентов данного вещества в одном литре раствора.
Грамм-эквивалент вещества – количество граммов вещества, численно равное его эквиваленту.
Эквивалент – это условная единица, равноценная одному иону водорода в кислотоно-основных реакциях или одному электрону в окислительно – восстановительных реакциях.
Для записи концентрации таких растворов используют сокращения н или N. Например, раствор, содержащий 0,1 моль-экв/л, называют децинормальным и записывают как 0,1 н.
,
СН – нормальная концентрация, моль-экв/л;
z – число эквивалентности;
Растворимость вещества S – максимальная масса вещества, которая может раствориться в 100 г растворителя:
Коэффициент растворимости – отношение массы вещества, образующего насыщенный раствор при конкретной температуре, к массе растворителя:
Задачи: Концентрация растворов, Правило креста
В данном разделе рассмотрены задачи на пересчет концентрации растворов, применение правила креста для нахождения концентрации при смешении и разбавлении растворов. Больше задач на расчет массовой доли растворенного вещества представлены в разделе подготовки к ОГЭ по химии.
Концентрация растворов и способы ее выражения
Задача 1. К 150 г 20% раствора сахарозы добавили 45 г глюкозы. Рассчитайте массовые доли углеводов в новом растворе.
Решение.
Вначале сахарозы было 30 г:
20 г сахарозы содержится в 100 г раствора
После прибавления глюкозы:
mобщ = m (сахарозы) + m (глюкозы) = 150 + 45 = 195 г
m раствора стала 195 г
Найдем полученные массовые доли сахарозы и глюкозы:
30 г сахарозы содержится в 195 г раствора
ω2 (сахарозы) = 15,4%:
45 г глюкозы содержится в 195 г раствора
ω2 (глюкозы) = 23,1%
Задача 2. Для нейтрализации 20 мл 0,1 н раствора кислоты потребовалось 6 мл раствора едкого натра. Определить нормальную концентрацию раствора едкого натра.
Решение.
Согласно закону эквивалентов при нейтрализации в точке эквивалентности действует равенство, называемое Золотым правилом аналитики:
Задача 3. Нормальная концентрация раствора KNO3 равна 0,2 моль/л. Найти процентную концентрацию раствора KNO3 и молярную концентрацию раствора KNO3. Плотность раствора принять раной 1 г/мл.
Решение:
Найдем молярную массу и молярную массу эквивалента KNO3.
В данном случае, они совпадают.
М (KNO3) = 39+14+(16×3) = 101 г/моль
Найдем массу KNO3, содержащуюся в его 0,2 н. растворе:
1 н раствор KNO3 содержит – МЭ KNO3 в 1000 мл
1М раствор KNO3 содержит – М KNO3 в 1000 мл
Таким образом, Сн = См = 0,2 моль/л
Сначала необходимо рассчитать массу раствора объемом 1000 мл.
m = ρ×V = 1×1000 = 1000 г
тогда, решая пропорцию, находим:
20,2 г KNO3 содержится – в 1000 г раствора
х г – в 100 г раствора
ω = 2,02%
Задача 4. Вычислите молярную и молярную концентрацию эквивалента 20 % раствора хлорида кальция плотностью 1,178 г/мл.
Решение.
Найдем массу раствора
mр-ра = V·ρ = 1000 · 1,178 = 1178 г.
Найдем массу CaCl2, содержащуюся в 1178 г. 20 % раствора
20 г CaCl2 содержится в 100 г раствора
х г — в 1178 г раствора
n = m/M = 235,6/111 = 2,1 моль
M(CaCl2) = 40+35,5·2 = 111 г/моль
См = 2,1/1 = 2,1 М
Молярная концентрация эквивалента определяется с помощью соотношения:
Мэ = fэкв· М(CaCl2) = 1/2·111 = 55,5 г/моль
Сн = 4,2/1 = 4,2 н
Задача 5. Чему равна нормальность 30% раствора NaOH плотностью 1,328 г/мл? К 1 л этого раствора прибавили 5 л воды. Вычислите массовую долю полученного раствора.
Решение.
Найдем массу NaOH, содержащуюся в 1328 г. 30 % раствора используя формулу:
ω(NaOH) = m (NaOH)/m
mр-ра = V·ρ = 1000 · 1,328 = 1328 г.
m(NaOH) = ω(NaOH) · m = 0,3 · 1328 = 398,4 г.
M(NaOH) = 23+16+1 = 40 г/моль
Мэ = fэкв· М(NaOH) = 1·40 = 40 г/моль
Найдем массу раствора после прибавления 5 л воды:
m2 = 1328 + 5000 = 6328 г
ω2(NaOH) = m (NaOH)/m2 = 398,4/6328 = 0,063 или 6,3 %
Задача 6. К 3 л 10 % раствора HNO3 плотностью 1,054 г/мл прибавили 5 л 2 % раствора той же кислоты плотностью 1,009 г/мл. Вычислите массовую долю в процентах и молярную концентрацию полученного раствора, объем которого равен 8 л.
Решение.
Найдем массу растворов объемом 3 л и 5 л
m1= V1·ρ = 3000·1,054 = 3162 г
m2= V2·ρ = 5000·1,009 = 5045 г
Найдем массу HNO3, содержащуюся в 3162 г. 10 % раствора
10 г HNO3 содержится в 100 г ее раствора
х1 г — в 3162 г раствора
Найдем массу HNO3, содержащуюся в 5045 г. 2 % раствора
2 г HNO3 содержится в 100 г ее раствора
х2 г — в 5045 г раствора
При смешивании:
m (HNO3) = 316,2+100,9 = 417,1 г
n = m/M = 417,1/63 = 6,62 моль
M(HNO3) = 1+14+16·3 = 63 г/моль
См = 6,62/1 = 6,62 М
Задача 7. Определить молярность, нормальность, моляльность и титр 4 % раствора FeSO4 объем которого равен 1,5 л, плотность 1037 кг/м 3
Решение.
M (FeSO4) = 56+32+16·4 = 152 г/моль
Мэ = fэкв· М(FeSO4) = 1/2·152 = 76 г/моль
Найдем m раствора объемом 1,5 л
m = V·ρ = 1,5·10 -3 ·1037 = 1,56 кг
Найдем m 4 % раствора
m(FeSO4) = ω(FeSO4) · mр-ра = 0,04·1,56 = 0,0624 кг = 62,4 г
Найдем молярность, которая определяется как количество молей растворенного вещества в одном литре раствора
n = m/М = 62,4/152 = 0,41 моль
Найдем нормальность:
b (x) = n(x)/m
Масса растворителя равна: mH2O = 1560-62,4 = 1497,6 г = 1,5 кг
b (FeSO4) = n(FeSO4)/m = 0,41/1,5 = 0,27 моль/кг
Титр определим следующим образом:
Т (х) = m (х)/V
Т (FeSO4) = m (FeSO4)/V = 62,4/1500 = 0,0416 г/мл
Задачи на смешение и разбавление растворов
Такие задачи можно решить с помощью правила креста или правила смешения. Суть его заключается в составлении «креста», в виде которого располагают две прямые линии. В центре пишут ту концентрацию, которую надо получить, у концов линий креста слева – концентрации исходных растворов (большую – сверху, меньшую — снизу), у концов линий креста справа – искомые концентрации (или массы) растворов, которые получают вычитанием по направлению линий из большей величины меньшей. В общем виде схема решения задач по правилу креста имеет вид:
Таким образом, следует взять mА грамм раствора с массовой долей а% и прибавить к нему mB грамм раствора с массовой долей b%. Если надо узнать, какие массы растворов данной концентрации следует взять, чтобы получить заданную массу раствора новой концентрации, то сначала определяют отношение mА и mB . Затем пропорционально этому отношению делят заданную массу.
Задача 8. Сколько граммов раствора с массовой долей серной кислоты 96% необходимо влить в 1 л воды, чтобы получить раствор с массовой долей 10%
Решение .
Для решения данной задачи используем правило креста.
Чистый растворитель (воду) можно представить как раствор с массовой долей растворенного вещества 0%
Определим m раствора с ω (H2SO4) = 96%, который надо влить в 1 л воды:
10 г H2SO4 надо влить в 86 г воды
Задача 9. Сколько мл 0,5 М и 0,1 М растворов азотной кислоты следует взять для приготовления 1000 мл 0,2 М раствора.
Решение.
По правилу креста, определяем в каких соотношениях следует взять 0,5 М и 0,1 М растворы азотной кислоты, чтобы получить раствор заданной концентрации:
Взяв 0,1 л и 0,3 л исходных растворов, получим 0,4 л 0,2 М раствора HNO3, но по условию задачи нужно получить 1 л. Для этого разделим 1 л на две части в соотношении 1:3, составив пропорции:
из 0,1 л 0,5 М раствора получим 0,4 л 0,2 М р-ра HNO3
из 0,3 л 0,5 М раствора получим 0,4 л 0,2 М р-ра HNO3
Задачи на растворы и методы их решения
Решение задач на растворы является важным разделом курса химии в современной школе. У многих ребят возникают определенные затруднения при проведении вычислений, связанные с отсутствием представлений о последовательности выполнения задачи. Проанализируем некоторые термины, которые включают в себя задачи на растворы по химии, и приведем примеры готовых решений.
Процентная концентрация
Задачи предполагают составление и решение пропорции. Учитывая, что выражается этот вид концентрации в массовых долях, можно определить содержание вещества в растворе.
Упомянутая величина является количественной характеристикой раствора, предложенного в задаче. В зависимости от типа задания, необходимо определять новую процентную концентрацию, рассчитывать массу вещества, вычислять объем раствора.
Молярная концентрация
Некоторые задачи на концентрацию растворов связаны с определением количества вещества в объеме растворителя. Единицами измерения такой величины является моль/л.
В школьной программе задания такого вида встречаются только на старшей ступени обучения.
Особенности задач на растворы
Приведем некоторые задачи на растворы по химии с решением, чтобы показать последовательность действий при их разборе. Для начала заметим, что можно делать рисунки, чтобы понять суть процессов, описываемых в предложенном задании. При желании можно оформлять задачу и в виде таблицы, в которой будут поставлены исходные и искомые величины.
Задача 1
В емкость, содержащую 5 литров 15%-раствора соли, влили семь литров воды. Определите процентную концентрацию вещества в новом растворе.
Для того чтобы определить искомую величину, обозначим ее через Х. Через пропорцию вычислим количественное содержание вещества в первом растворе: если 5 умножить на 0,15, получаем 0,75 грамма.
Далее вычисляем массу нового раствора, учитывая, что влили 7 литров воды, и получаем 12 граммов.
Находим содержание в процентах поваренной соли в полученном растворе исходя из определения данной величины, получаем: (0,75 : 12) х 100% = 6,25%
Приведем еще один пример задания, связанного с использованием при расчетах математической пропорции.
Задача 2
Сколько по массе меди необходимо добавить к куску бронзы, имеющему массу 8 килограммов, содержащему 13 процентов чистого металла, чтобы увеличить процентное содержание меди до 25 %.
Такие задачи на растворы сначала требуют определить массу чистой меди в исходном сплаве. Для этого можно воспользоваться математической пропорцией. В результате получается, что масса составляет: 8 х 0,13 = 1,04 кг
Искомую величину возьмем за х (граммов), тогда в новом сплаве получим ее значение (1,04 + х) килограммов. Выразим массу получаемого сплава, получаем: (8 + х) килограммов.
В задаче содержание металла в процентах в новом сплаве составляет 25 процентов, можно составить математическое уравнение.
Разнообразные задачи на растворы включают в тестовые задания для проверки уровня предметных знаний выпускников одинадцатых классов. Приведем некоторые условия и решения заданий такого типа.
Задача 3
Определите объем (при нормальных условиях) газа, который был собран после введения 0,3 моль чистого алюминия в 160 миллилитрах теплого 20% раствора едкого калия (1,19 г/мл).
Последовательность проведения расчетов в данной задаче:
- Сначала необходимо определить массу раствора.
- Далее вычисляется количество щелочи.
- Полученные параметры сравниваются между собой, определяется недостача. Последующие вычисления проводят по веществу, взятому в недостаточном количестве.
- Пишем уравнение реакции, происходящей между исходными веществами, расставляем стереохимические коэффициенты. Проводим вычисления по уравнению.
Масса раствора щелочи, используемой в задаче, составляет 160 х 1,19 = 190,4 г.
Масса вещества составит 38,08 грамма. Количество взятой щелочи – 0,68 моль. В условии сказано, что количество алюминия 0,3 моль, следовательно, в недостатке присутствует именно этот металл.
Последующие вычисления осуществляем именно по нему. Получается, что объем газа составит 0,3 х 67,2/2 = 10,08 л.
Задачи на растворы такого типа у выпускников вызывают максимальные затруднения. Причина в неотработанности последовательности действий, а также в отсутствии сформированных представлений об основных математических вычислениях.
Задача 4
Задачи по теме «Растворы» могут включать и определение чистого вещества при заданном процентном содержании примесей. Приведем пример подобного задания, чтобы у ребят не возникало сложностей с его выполнением.
Вычислите объем газа, полученного при воздействии концентрированной серной кислоты на 292,5 г соли с 20% примесей.
- Учитывая, что в условии задачи говорится о наличии 20 процентов примесей, необходимо определить содержание вещества по массе (80 %).
- Прописываем уравнение химической реакции, расставляем стереохимические коэффициенты. Проводим вычисления объема выделяющегося газа, используя молярный объем.
Масса вещества, исходя из того, что есть примеси, получается 234 грамма. А при проведении вычислений по данному уравнению, получим, что объем будет равен 89,6 литров.
Задача 5
Какие еще предлагаются в школьной программе по химии задачи на растворы? Приведем пример задания, связанного с необходимостью вычисления массы продукта.
Сульфид свинца (II), имеющий массу 95,6 г, взаимодействует с 300 миллилитрами 30%-раствора перекиси водорода (плотность 1,1222 г/мл). Продукт реакции составляет (в граммах) .
Порядок решения задачи:
- Растворы веществ переводим через пропорции в массу.
- Далее определяем количество каждого исходного компонента.
- После сравнения полученных результатов, выбираем то вещество, которое взято в недостаточном количестве.
- Вычисления проводим именно по веществу, взятому в недостатке.
- Составляем уравнение химического взаимодействия и вычисляем массу неизвестного вещества.
Вычислим раствор перекиси, он составляет 336,66 грамма. Масса вещества будет соответствовать 100,99 грамма. Вычислим количество моль, оно составит 2,97. Сульфида свинца будет 95,6 /239 =0,4 моль, (он содержится в недостатке).
Составляем уравнение химического взаимодействия. Определяем по схеме искомую величину и получаем 121,2 граммов.
Задача 6
Найти количество газа (моль), которое можно получить при термическом обжиге 5,61 кг сульфида железа (II), имеющего степень чистоты 80%.
- Вычисляем массу чистого FeS.
- Записываем уравнение химического взаимодействия его с кислородом воздуха. Проводим вычисления по реакции.
По массе чистое вещество составит 4488 г. Количество определяемого компонента будет 51 литр.
Задача 7
Из 134,4 литров (при нормальных условиях) оксида серы (4) приготовили раствор. К нему прилили 1,5 литра 25%-раствора едкого натра (1,28 г/мл). Определите массу получившейся соли.
- Рассчитываем массу раствора щелочи по формуле.
- Находим массу и число моль едкого натра.
- Вычисляем эту же величину для оксида серы (4).
- По соотношению полученных показателей определяем состав образующейся соли, определяем недостаток. Расчеты проводим по недостатку.
- Записываем химическую реакцию с коэффициентами, вычисляем массу новой соли по недостатку.
В итоге у нас получается:
- раствор щелочи составит 1171,875 грамма;
- по массе гидроксида натрия составит 292,97 грамма;
- в молях данного вещества содержится 7,32 моль;
- анологично вычисляем для оксида серы (4), получаем 6 моль;
- в результате взаимодействия будет образовываться средняя соль;
- получаем 756 граммов.
Задача 8
К 100 граммам 10%-раствора хлорида аммония прилили 100 г 10%-раствора нитрата серебра. Определите массу (в граммах) осадка.
- Вычисляем массу и количество вещества хлорида аммония.
- Рассчитываем массу и количество вещества соли – нитрата серебра.
- Определяем, какое из исходных веществ было взято в недостаточном количестве, проводим по нему расчеты.
- Записываем уравнение происходящей реакции, проводим по ней расчеты массы осадка.
Холрида аммония по массе будет 10 г, по количеству – 0,19 моль. Нитрата серебра взято 10 граммов, что составляет 0,059 моль. При вычислениях по недосттаку, получим массу соли 8,46 грамма.
Для того чтобы справиться со сложными заданиями, которые предлагаются на выпускных экзаменах в девятом и одиннадцатом классе (по курсу неогранической химии), необходимо владеть алгоритмами и иметь определенные вычислительные навыки. Кроме того, важно владеть технологией составления химических уравнений, уметь расставлять коэффициенты в процессе.
Без таких элементарных умений и навыков даже самая простая задача на определение процентной концентрации вещества в растворе либо смеси, покажется выпускнику трудным и серьезным испытанием.