Как восстанавливаются нервные клетки у женщин. Нервные клетки восстанавливаются! История со стрессом
Как восстанавливаются нервные клетки у женщин. Нервные клетки восстанавливаются! История со стрессом
Журнал добавлен в корзину.
НЕРВНЫЕ КЛЕТКИ ВОССТАНАВЛИВАЮТСЯ
Доктор медицинских наук В. ГРИНЕВИЧ.
Крылатое выражение “Нервные клетки не восстанавливаются” все с детства воспринимают как непреложную истину. Однако эта аксиома – не более чем миф, и новые научные данные его опровергают.
Природа закладывает в развивающийся мозг очень высокий запас прочности: при эмбриогенезе образуется большой избыток нейронов. Почти 70% из них гибнут еще до рождения ребенка. Человеческий мозг продолжает терять нейроны и после рождения, на протяжении всей жизни. Такая гибель клеток генетически запрограммирована. Конечно же погибают не только нейроны, но и другие клетки организма. Только все остальные ткани обладают высокой регенерационной способностью, то есть их клетки делятся, замещая погибшие. Наиболее активно процесс регенерации идет в клетках эпителия и кроветворных органах (красный костный мозг). Но есть клетки, в которых гены, отвечающие за размножение делением, заблокированы. Помимо нейронов к таким клеткам относятся клетки сердечной мышцы. Как же люди умудряются сохранить интеллект до весьма преклонных лет, если нервные клетки погибают и не обновляются?
Одно из возможных объяснений: в нервной системе одновременно “работают” не все, а только 10% нейронов. Этот факт часто приводится в популярной и даже научной литературе. Мне неоднократно приходилось обсуждать данное утверждение со своими отечественными и зарубежными коллегами. И никто из них не понимает, откуда взялась такая цифра. Любая клетка одновременно и живет и “работает”. В каждом нейроне все время происходят обменные процессы, синтезируются белки, генерируются и передаются нервные импульсы. Поэтому, оставив гипотезу об “отдыхающих” нейронах, обратимся к одному из свойств нервной системы, а именно – к ее исключительной пластичности.
Смысл пластичности в том, что функции погибших нервных клеток берут на себя их оставшиеся в живых “коллеги”, которые увеличиваются в размерах и формируют новые связи, компенсируя утраченные функции. Высокую, но не беспредельную эффективность подобной компенсации можно проиллюстрировать на примере болезни Паркинсона, при которой происходит постепенное отмирание нейронов. Оказывается, пока в головном мозге не погибнет около 90% нейронов, клинические симптомы заболевания (дрожание конечностей, ограничение подвижности, неустойчивая походка, слабоумие) не проявляются, то есть человек выглядит практически здоровым. Значит, одна живая нервная клетка может заменить девять погибших.
Но пластичность нервной системы – не единственный механизм, позволяющий сохранить интеллект до глубокой старости. У природы имеется и запасной вариант – возникновение новых нервных клеток в головном мозге взрослых млекопитающих, или нейрогенез.
Первое сообщение о нейрогенезе появилось в 1962 году в престижном научном журнале “Science”. Статья называлась “Формируются ли новые нейроны в мозге взрослых млекопитающих?”. Ее автор, профессор Жозеф Олтман из Университета Пердью (США) с помощью электрического тока разрушил одну из структур мозга крысы (латеральное коленчатое тело) и ввел туда радиоактивное вещество, проникающее во вновь возникающие клетки. Через несколько месяцев ученый обнаружил новые радиоактивные нейроны в таламусе (участок переднего мозга) и коре головного мозга. В течение последующих семи лет Олтман опубликовал еще несколько работ, доказывающих существование нейрогенеза в мозге взрослых млекопитающих. Однако тогда, в 1960-е годы, его работы вызывали у нейробиологов лишь скепсис, их развития не последовало.
И только спустя двадцать лет нейрогенез был вновь “открыт”, но уже в головном мозге птиц. Многие исследователи певчих птиц обращали внимание на то, что в течение каждого брачного сезона самец канарейки Serinus canaria исполняет песню с новыми “коленами”. Причем новые трели он не перенимает у собратьев, поскольку песни обновлялись и в условиях изоляции. Ученые стали детально изучать главный вокальный центр птиц, расположенный в специальном отделе головного мозга, и обнаружили, что в конце брачного сезона (у канареек он приходится на август и январь) значительная часть нейронов вокального центра погибала, – вероятно, из-за избыточной функциональной нагрузки. В середине 1980-х годов профессору Фернандо Ноттебуму из Рокфеллеровского университета (США) удалось показать, что у взрослых самцов канареек процесс нейрогенеза происходит в вокальном центре постоянно, но количество образующихся нейронов подвержено сезонным колебаниям. Пик нейрогенеза у канареек приходится на октябрь и март, то есть через два месяца после брачных сезонов. Вот почему “фонотека” песен самца канарейки регулярно обновляется.
В конце 1980-х годов нейрогенез был также обнаружен у взрослых амфибий в лаборатории ленинградского ученого профессора А. Л. Поленова.
Откуда берутся новые нейроны, если нервные клетки не делятся? Источником новых нейронов и у птиц, и у амфибий оказались нейрональные стволовые клетки стенки желудочков мозга. Во время развития зародыша именно из этих клеток образуются клетки нервной системы: нейроны и клетки глии. Но не все стволовые клетки превращаются в клетки нервной системы – часть из них “затаивается” и ждет своего часа.
Как было показано, новые нейроны появляются из стволовых клеток взрослого организма и у низших позвоночных. Однако потребовалось почти пятнадцать лет, чтобы доказать, что аналогичный процесс происходит и в нервной системе млекопитающих.
Развитие нейробиологии в начале 1990-х годов привело к обнаружению “новорожденных” нейронов в головном мозге взрослых крыс и мышей. Их находили большей частью в эволюционно древних отделах головного мозга: обонятельных луковицах и коре гиппокампа, которые отвечают главным образом за эмоциональное поведение, реакцию на стресс и регуляцию половых функций млекопитающих.
Так же, как у птиц и низших позвоночных, у млекопитающих нейрональные стволовые клетки располагаются поблизости от боковых желудочков мозга. Их перерождение в нейроны идет очень интенсивно. У взрослых крыс за месяц из стволовых клеток образуется около 250 000 нейронов, замещая 3% всех нейронов гиппокампа. Продолжительность жизни таких нейронов очень высока – до 112 дней. Стволовые нейрональные клетки преодолевают длинный путь (около 2 см). Они также способны мигрировать в обонятельную луковицу, превращаясь там в нейроны.
Обонятельные луковицы головного мозга млекопитающих отвечают за восприятие и первичную обработку различных запахов, включая и распознавание феромонов – веществ, которые по своему химическому составу близки к половым гормонам. Сексуальное поведение у грызунов регулируется в первую очередь выработкой феромонов. Гиппокамп же расположен под полушариями мозга. Функции этой сложноорганизованной структуры связаны с формированием краткосрочной памяти, реализацией некоторых эмоций и участием в формировании полового поведения. Наличие у крыс постоянного нейрогенеза в обонятельной луковице и гиппокампе объясняется тем, что у грызунов эти структуры несут основную функциональную нагрузку. Поэтому нервные клетки в них часто гибнут, а значит, их необходимо обновлять.
Для того чтобы понять, какие условия влияют на нейрогенез в гиппокампе и обонятельной луковице, профессор Гейдж из Университета Салка (США) построил миниатюрный город. Мыши там играли, занимались физкультурой, отыскивали выходы из лабиринтов. Оказалось, что у “городских” мышей новые нейроны возникали в гораздо большем количестве, чем у их пассивных сородичей, погрязших в рутинной жизни в виварии.
Cтволовые клетки можно извлечь из мозга и пересадить в другой участок нервной системы, где они превратятся в нейроны. Профессор Гейдж с коллегами провел несколько подобных экспериментов, наиболее впечатляющим среди которых был следующий. Участок мозговой ткани, содержащий стволовые клетки, пересадили в разрушенную сетчатку глаза крысы. (Светочувствительная внутренняя стенка глаза имеет “нервное” происхождение: состоит из видоизмененных нейронов – палочек и колбочек. Когда светочувствительный слой разрушается, наступает слепота.) Пересаженные стволовые клетки мозга превратились в нейроны сетчатки, их отростки достигли зрительного нерва, и крыса прозрела! Причем при пересадке стволовых клеток мозга в неповрежденный глаз никаких превращений с ними не происходило . Вероятно, при повреждении сетчатки глаза вырабатываются какие-то вещества (например, так называемые факторы роста), которые стимулируют нейрогенез. Однако точный механизм этого явления до сих пор не ясен.
Перед учеными встала задача показать, что нейрогенез идет не только у грызунов, но и у человека. Для этого исследователи под руководством профессора Гейджа недавно выполнили сенсационную работу. В одной из американских онкологических клиник группа больных, имеющих неизлечимые злокачественные новообразования, принимала химиотерапевтический препарат бромдиоксиуридин. У этого вещества есть важное свойство – способность накапливаться в делящихся клетках различных органов и тканей. Бромдиоксиуридин включается в ДНК материнской клетки и сохраняется в дочерних клетках после деления материнской. Патологоанатомическое исследование показало, что нейроны, содержащие бромдиоксиуридин, обнаруживаются практически во всех отделах мозга, включая кору больших полушарий. Значит, эти нейроны были новыми клетками, возникшими при делении стволовых клеток. Находка безоговорочно подтвердила, что процесс нейрогенеза происходит и у взрослых людей. Но если у грызунов нейрогенез идет только в гиппокампе, то у человека, вероятно, он может захватывать более обширные зоны головного мозга, включая кору больших полушарий. Недавно проведенные исследования показали, что новые нейроны во взрослом мозге могут образовываться не только из нейрональных стволовых, но из стволовых клеток крови. Открытие этого феномена вызвало в научном мире эйфорию. Однако публикация в журнале “Nature” за октябрь 2003 года во многом остудила восторженные умы. Оказалось, что стволовые клетки крови действительно проникают в мозг, но они не превращаются в нейроны, а сливаются с ними, образуя двуядерные клетки. Затем “старое” ядро нейрона разрушается, а его замещает “новое” ядро стволовой клетки крови. В организме крысы стволовые клетки крови в основном сливаются с гигантскими клетками мозжечка – клетками Пуркинье, правда, происходит это довольно редко: во всем мозжечке можно обнаружить лишь несколько слившихся клеток. Более интенсивное слияние нейронов происходит в печени и сердечной мышце. Пока совершенно непонятно, какой в этом физиологический смысл. Одна из гипотез заключается в том, что стволовые клетки крови несут с собой новый генетический материал, который, попадая в “старую” клетку мозжечка, продлевает ей жизнь.
Итак, новые нейроны могут возникать из стволовых клеток даже в мозге взрослого человека. Этот феномен уже достаточно широко применяется для лечения различных нейродегенеративных заболеваний (заболеваний, сопровождающихся гибелью нейронов головного мозга). Препараты стволовых клеток для трансплантации получают двумя способами. Первый – это использование нейрональных стволовых клеток, которые и у эмбриона, и у взрослого человека располагаются вокруг желудочков головного мозга. Второй подход – использование эмбриональных стволовых клеток. Эти клетки располагаются во внутренней клеточной массе на ранней стадии формирования зародыша. Они способны превращаться практически в любые клетки организма. Наибольшая сложность в работе с эмбриональными клетками – заставить их трансформироваться в нейроны. Новые технологии позволяют сделать это.
В некоторых лечебных учреждениях в США уже сформированы “библиотеки” нейрональных стволовых клеток, полученных из зародышевой ткани, и проводятся их пересадки пациентам. Первые попытки трансплантации дают положительные результаты, хотя на сегодняшний день врачи не могут разрешить основную проблему подобных пересадок: безудержное размножение стволовых клеток в 30-40% случаев приводит к образованию злокачественных опухолей. Пока не найдено подхода к предотвращению подобного побочного эффекта. Но, несмотря на это, трансплантация стволовых клеток, несомненно, будет одним из главных подходов в терапии таких нейродегенеративных заболеваний, как болезни Альцгеймера и Паркинсона, ставших бичом развитых стран.
“Наука и жизнь” о стволовых клетках:
Белоконева О., канд. хим. наук. Запрет для нервных клеток. – 2001, № 8.
Белоконева О., канд. хим. наук. Праматерь всех клеток. – 2001, № 10.
Смирнов В., акад. РАМН, член-корр. РАН. Восстановительная терапия будущего. – 2001, № 8.
Выживут только нейроны: Как восстановить нервные клетки
Текст: Екатерина Хрипко
Раньше было принято говорить, что нервные клетки не восстанавливаются — однако новые исследования подтверждают, что мы способны не только «тратить» нервы. Нейрогенез — или процесс образования нервных клеток — открыли недавно, так что полного представления о нём у учёных пока нет, а данные зачастую расходятся. Трудность и в том, что изучать мозг человека непросто по очевидным причинам — медицинским и этическим, — и исследования пока проводятся в основном на грызунах. Тем не менее мы попробовали разобраться, что на сегодня известно о нейронах.
Трудный путь к мозгу
В отличие от клеток других тканей, нейроны не способны делиться, поэтому учёные долгое время думали, что мы ограничены запасом, доставшимся при рождении. Позже выяснилось, что новые нейроны всё-таки появляются в течение жизни — они возникают из стволовых клеток, которые способны превратиться практически в любые. Свой запас таких универсальных помощников есть и у мозга. Пока научное сообщество не определилось с точным количеством отделов, в которых формируются новые нейроны. Известно, что они образуются в субвентикулярной зоне (тонком слое клеток вдоль желудочков мозга) и в зубчатой извилине гиппокампа — отдела мозга, который отвечает за эмоции и память.
Значительная часть свежих нервных клеток быстро погибает — из-за микросреды, работы нейромедиаторов, активности некоторых белков и прочей химии мозга. Кроме того, новорождённой нервной клетке для существования необходимо сформировать связи (синапсы) с другими: одиноко плавающие нейроны мозгу не нужны. В среднем в структуру мозга каждый день встраивается около 700 новых выживших нейронов.
Нейроны погибают —
и это нормально
Мозг взрослого человека состоит примерно из 86 миллиардов нейронов — но при рождении их намного больше. По словам сотрудника лаборатории возрастной психогенетики Психологического института РАО, психофизиолога Ильи Захарова, уже к концу первого года жизни число сохранившихся нейронов становится в два раза меньше, чем при рождении. Развитие мозга активнее всего происходит в первые три года жизни — в это время образуются нейронные связи, в которых сохраняется весь интеллектуальный и эмоциональный опыт, сформированные и закреплённые навыки. Всё, что ребёнок видит, трогает, нюхает, пробует на вкус или познаёт как-то ещё, фиксируется в виде новой синаптической связи. Подобным образом мозг будет развиваться всю жизнь, но главный скачок он совершает в раннем детстве.
Одновременно мозг старается навести порядок и уничтожает часть нервных клеток, которые не успели вступить в связи с другими, считая их бесполезными. Происходит так называемый апоптоз — запрограммированная гибель клеток. Это нормальный процесс, в котором нет ничего страшного.
Один за всех
По словам Захарова, хотя стресс может способствовать гибели клеток за счёт токсического эффекта некоторых гормонов и нейромедиаторов, такая потеря тоже не критична. «Разрушающий нервные клетки» стресс вообще очень размытое понятие. «Все знают, что такое стресс, и никто не знает, что это такое», — писал ещё основоположник учения о стрессе Ханс Селье.
Главный редактор сайта «Нейроновости» Алексей Паевский отмечает, что нейрон сам по себе клетка крепкая, и когда речь идёт о гибели, то подразумевается не единичное эмоциональное потрясение, а так называемый окислительный стресс — сдвиг химических реакций в организме в сторону окисления. К нему может приводить синдром хронической усталости, длительная депрессия, нейродегенеративные заболевания (например, болезнь Паркинсона или болезнь Альцгеймера), травмы и другие факторы.
Переживать из-за стрессовой утраты нервных клеток не стоит и потому, что существуют способы её компенсировать — в первую очередь это пластичность головного мозга. Один нейрон может сформировать множество синаптических связей — обычно их около десяти тысяч — и в случае необходимости берёт на себя функции погибшего товарища. Например, признаки болезни Паркинсона начнут проявляться, только когда погибнет больше 90 % нервных клеток мозга. Выходит, что одна клетка может работать за девятерых.
Обучение и наслаждение
Учёные сходятся в мнении, что мозгу вредят те же процессы, что не приносят пользы остальному организму: депрессия, хроническое переутомление, недосыпание, несбалансированное питание, слишком большое количество алкоголя. Эти факторы, скорее всего, препятствуют и образованию новых. Логично, что обратный эффект должны нести занятия, которые полезны в целом — а в идеале ещё и приятны.
Образование новых нейронов и их встраивание сильно зависит от микроокружения, в том числе от нейромедиаторов — специальных веществ, помогающим клеткам передавать друг другу сигналы; эти сигналы могут быть и возбуждающими, и тормозящими. Нейромедиаторов множество, и к ним относятся, например, всем известные дофамин и серотонин — они положительно влияют на формирование нервных связей. Деятельность, которая способствует выбросу дофамина или серотонина, может способствовать нейрогенезу; к ней относится всё приятное или полезное для выживания и продолжения рода: еда, смех, любовь, секс, а также получение новых знаний.
Захаров уточняет, что пока сложно выделить конкретный нейромедиатор, гарантированно влияющий на нейрогенез, но можно точно сказать, что получение свежей информации играет положительную роль. Познавательные процессы и опыт не только способствуют возникновению новых нейронов, но и «помогают» им выжить — обучение вовлекает клетки в создание новых цепочек.
Кроме этого, на нейрогенезе хорошо сказывается и так называемая обогащённая окружающая среда. У мышей, которые жили в клетках со своими собратьями, а также множеством занимательных предметов — от бегового колеса, игрушек и лабиринтов до самой разнообразной еды, — количество новых нейронов было больше, чем у грызунов, одиноко обитавших в пустых клетках. В мире людей под богатой окружающей средой подразумевают «человеческую» версию всего того, что было у мышей: нам нужны социальные контакты, развлечения, решения различных задач, физическая активность, богатый рацион и совершение открытий.
Спорт
В исследованиях, проведённых опять же у мышей, оказалось, что чем больше животное «занимается спортом» (бегает в колесе) в детстве и юности, тем дольше оно сохраняет ясность ума в старости. Ещё было отмечено, что сочетание физической нагрузки с умственной способствует лучшему запоминанию и усвоению знаний. Эти эффекты связывают с когнитивным резервом, который теоретически влияет на нейрогенез у взрослых — правда, механизмы этих процессов пока не ясны.
Именно после этих экспериментов стали говорить, что для поддержания здоровья мозга нужно бегать — но, вероятно, принципиально важна сама физическая активность, а не её конкретный вид. Другое дело, что невозможно заставить мышь заняться йогой или танцами, чтобы изучить их влияние на мозг. Илья Захаров рассказывает, что у людей, ведущих активный образ жизни, старение мозга замедляется, ведь спорт — это тоже опыт, постоянное получение и развитие навыков. А ещё он влияет на здоровье мозга физически — улучшает кровообращение, способствует доставке питательных веществ в нервную систему.
Сон и еда
Считается, что во сне связи между нейронами становятся прочнее, а вся накопленная за день информация упорядочивается — происходит что-то вроде дефрагментации жёсткого диска. Недостаток сна (хроническое недосыпание и стабильная бессонница) не только препятствует нейрогенезу, но и снижает позитивный эффект от процессов обучения — мозг просто не успевает привести полученные знания в порядок.
Рекомендации о сбалансированном и разнообразном питании актуальны и для нервной системы. Жирные кислоты омега-3 — одни из главных веществ, усиливающих формирование новых нервных клеток; они также положительно влияют на пространственную память и работоспособность, не говоря уже о здоровье сердца. Эти соединения надо искать в жирной рыбе и морепродуктах — от креветок до водорослей. Полезный эффект приписывается и таким веществам, как флавоноиды (ими богаты зеленый чай, цитрусовые, какао, черника) и ресвератрол (содержится в винограде, красном вине).
Антидепрессанты
Этот вариант не рекомендуется использовать с профилактической целью — то есть просто для стимуляции нейрогенеза. Но давно доказано, что депрессия негативно сказывается как на существующих нервных клетках, так и на образовании новых. Антидепрессанты, кроме очевидного эффекта коррекции настроения, обладают благотворным для нейрогенеза эффектом. В числе прочего они способствуют выработке нейромедиаторов — а те, в свою очередь, улучшают и формирование нейронов, и психологическое самочувствие.
Нервные клетки восстанавливаются: Как запустить производство новых нейронов
Нейронауки в направлении изучения человека, кажется, перепрыгнули большую пропасть за необыкновенно короткий отрезок. Всего за десять лет был открыт и изучен нейрогенез — производство новых нервных клеток и отвергнута парадигма: нервные клетки взрослого человека не восстанавливаются. И наиболее интересным с точки зрения нейрогенеза для ученых представляется гиппокамп, ведь именно в нём находится одна из трех зон производства новых нервных клеток.
Гиппокамп участвует в важнейших мозговых процессах, таких, как консолидация памяти — перевод памяти из краткосрочной в долгосрочную, формирование эмоций и пространственное ориентирование.
Восстанавливаются нервные клетки или нет?
В свое время открыл путь к изучению гиппокампа случай канадца Н.М., перенесший нейрохирургическую операцию на мозге в связи с эпилепсией.
Больному в 27-летнем возрасте были удалены 2/3 части гиппокампа, миндалина и медиальная часть височных долей обоих полушарий.
Речь, собственное имя, коэффициент интеллекта Н.М. сохранились после операции, однако он только частично помнил события, которые происходили непосредственно до операции и совершенно потерял способность запоминать события, которые происходили после. Так ученые обнаружили главное действующее лицо в системе запоминания.
В 2000-х Джоном О’Киф, Мэй-Бриттом Мозер и Эдвард Мозер были открыты нейроны места и нейроны решетки в гиппокампе, а в 2014 году ученые получили Нобелевскую премию за свое открытие. Нейроны решетки удивительны, они «разлинеивают» пространство на шестиугольники, воссоздавая как бы координатную сетку. В этой координатной сетке мозг размещает нас и видимые нам объекты. Благодаря им мы можем ориентироваться в пространстве в моменте и запоминать расположение улиц, квартир, предметов.
Еще одно место в ключевых процессах гиппокампа занимает нейрогенез — производство новых нервных клеток. За последние 30 лет десятки исследований подтвердили: гиппокамп взрослого человека продолжает вырабатывать новые нервные клетки почти всю жизнь. Так что утверждение «Нервные клетки не восстанавливаются» только от части правда. Погибшие нейроны действительно не могут вдруг ожить, но новые нейроны, замещающие погибшие, мы всё-таки получаем.
Гиппокамп производит 700 новых нейронов каждый день. Казалось бы, цифра не такая уж и впечатляющая. Однако к пятидесяти годам все наши нейроны, данные от рождения заменяются на новые, выработанные уже при жизни. Не последнюю роль в этом играет фабрика нейрогенеза — гиппокамп.
О том, насколько важно производство нервных клеток говорят данные исследований Сандрин Турет — нейробиолога и руководителя лаборатории нейрогенеза и психического здоровья Королевского колледжа Лондона. Сокращение темпа нейрогенеза приводит к серьезному снижению когнитивных функций, к депрессивным состояниям, и, как можно догадаться, повышает риск запуска болезни Альцгеймера и других форм деменции, признаки которых — нарушение памяти и дезориентация. Эти болезни на ранней стадии поражают именно нейроны гиппокампа.
Болезнь Альцгеймера зарождается в мозгу за 30-50 лет до появления первых симптомов. Ученые ожидают, что случаи возникновения Альцгеймера увеличатся в 3 раза в ближайшие 25 лет, так как мозг перестает справляться с теми нагрузками, которые накладывает на него современный человек, а нейрогенез весьма чувствителен к внешним и внутренним негативным воздействиям.
Увеличение количества вновь образовавшихся стволовых клеток и нейронов в мозге помогает сохранить способность ориентироваться в пространстве, запоминать дорогу несмотря на возраст, сохранять память и мышление.
Что опасно для нейрогенеза и существенно снижает его темп?
1. Хронический стресс.
С одной стороны, уже некоторое время ученые говорят, что избыток гормона стресса кортизола вызывает воспалительные процессы в гиппокампе.
Новое исследование южнокорейского Университета науки и технологии не просто подтвердило, что хронический стресс влияет на гибель нейронов гиппокампа и на снижение темпа появление новых нейронов, ученые выяснили, что хронический стресс — злейший враг гиппокампа и нейрогенеза. Он запускает механизм аутофагии, при котором клетки по сути съедают сами себя.
2. Недосып.
Ученые из Пенсильванского университета (США) обнаружили, что недостаток сна нарушает синтез белка в гиппокампе, что в свою очередь влияет на нейрогенез и ведет к нарушению памяти.
Другое исследование показало, что объем гиппокампа людей, страдающих обструктивным апноэ во сне, снижается за счет гибели нейронов. Ученые приходят к выводу: для нейрогенеза критически важны показатели не только продолжительности сна, но его качества.
3. Неправильная диета.
Увы, насыщенные жиры снижают темпы нейрогенеза, так что от жареной во фритюре курочки лучше отказаться. Стимуляцию производства новых нейронов запускают жирные кислоты Омега-3 и флавоноиды. Ученые уверены, что снижение калорийности и короткие режимы голодания увеличивают производство нервных клеток, улучшают память и другие когнитивные способности.
«Восстанавливаются нервные клетки или нет» — вопрос решенный, причем силами самого организма. Скорость восстановления зависит от индивидуальных особенностей, однако, помочь этому процессу можно через режим, диету и гигиену «когнитивной» деятельности.опубликовано econet.ru.
Автор Мари Саксон
Нервные клетки не восстанавливаются! Миф или правда?
Ученые то подтверждают, то опровергают, что нервные клетки не восстанавливаются. Почему этот вопрос вызывает такие сложности и до сих пор не нашел однозначного ответа?
Клетка не простая, а золотая!
Нервные клетки мозга — они же нейроны — являются уникальными в нашем организме. Обычно производство новых клеток происходит путем деления, но нейроны не делятся. Кроме того, при рождении в нас уже заложен определенный запас нервных клеток — примерно 85–100 млрд. Они интересны не только своим строением, но и поведением.
Нейроны образуют целую сеть по всему организму — нервную систему. Она отвечает за взаимодействие всех наших систем, объединяя их, за переработку поступающей от органов чувств информации и передачу ее другим органам. Происходит это при помощи электрических импульсов. Помните, какой «разряд» можно получить, неудачно ударившись локтем? — В этот момент происходит защемление нерва, поэтому мы испытываем такую необычную боль.
Откуда ноги растут
Распространилось утверждение, что нервные клетки не восстанавливаются, в результате одного эксперимента в 1990-х годах. Карликовые зеленые обезьянки внезапно погибли в исследовательском центре. В результате вскрытия выяснилось, у них погибли все нейроны в гиппокампе, ответственном за процессы обучения и память. Причиной гибели назвали социальную изоляцию, а СМИ интерпретировали эти результаты как «стресс убивает нейроны». Дальнейшее изучение с использованием гормона стресса кортизола показало, что эксперимент был некорректным из-за ошибочной технологии, но миф уже успел распространиться.
Жизнь и смерть нейронов
Наши нервные клетки действительно погибают, причем этот процесс происходит не только из-за внешнего воздействия, а заложен природой. В детстве мы имеем огромный запас нейронов, между которыми образуются хаотичные связи. В процессе обучения новому и отработки этих навыков нейронные связи сохраняются и укрепляются. А те клетки, которые не смогли соединиться в прочные связи, отмирают. Это называется синаптическим прунингом — от англ. «прореживание». Это необходимо для наибольшей эффективности образовавшихся связей и удаления ненужных — тех, что мы не используем.
Процесс образования новых нейронных связей — синапсов — позволяет мозгу быть пластичным. Благодаря ему мы можем осваивать новые навыки в течение всей жизни, повышать продуктивность мозга, просто тренируя когнитивные функции мозга. Но есть и обратная сторона медали — не получая полноценной нагрузки, связи разрушаются. Восстановить утраченные синаптические связи не получится, но есть хорошая новость — можно создать новые, причем в любой момент.
А как же все-таки стресс? Если потерять большое количество нейронов, получится ли создать новые связи из оставшихся? Рождение новых нервных клеток называется нейрогенезом. Максимальный его пик приходится на внутриутробное развитие человека, но никак не коррелирует с восстановлением нервных клеток у беременных. Нейрогенез начинается с деления стволовых нейронных клеток, которые потом перемещаются, и уже из них образуются нейроны. Производятся они в трех областях организма — гиппокампе, обонятельных луковицах и миндалине (здесь они накапливаются в период полового созревания). У мужчин и у женщин процесс нейрогенеза происходит одинаково, гендерные различия никак не влияют на скорость образования нервных клеток. А что влияет?
Как обрести былую мощь
Участники Всемирного конгресса психиатров предоставили данные, согласно которым на восстановление нейронов положительно влияют умственные нагрузки и экстремальные ситуации. Регулярное использование кратковременной памяти, пространственного мышления и решение сложных задач активизирует деятельность мозга, создавая новые нейронные связи. Их наращивание и укрепление способствует повышению общей продуктивности, но только если нагрузка постепенно возрастает. Помните, в противном случае — деградация. Чтобы тренировка мозга происходила комплексно, используйте онлайн-тренажеры Викиум . Они развивают все 3 основные функции мозга — внимание, память, мышление, а также выстраиваются в умную тренировку, которая корректирует нагрузку в зависимости от вашего прогресса.
Только подписчикам нашего дзен-канала мы дарим 500 рублей на покупки на Викиум! Просто введите промокод DZEN_500 при оплате и получите скидку!